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Abstract. A new concept for a cluster of compact lidar systems named VAHCOLI (Vertical And Horizontal COverage by

LIdars) is presented which allows to measure temperatures, winds, and aerosols in the middle atmosphere (∼10-110 km) with

high temporal and vertical resolution of minutes and some tens of meters, respectively, simultaneously covering horizontal

scales from few hundred meters to several hundred kilometers (’four-dimensional coverage’). The individual lidars (’units’)

being used in VAHCOLI are based on a diode-pumped alexandrite laser currently designed to detect potassium (λ=770 nm), as5

well as on sophisticated laser spectroscopy measuring all relevant frequencies (seeder laser, power laser, backscattered light)

with high temporal resolution (2 ms) and high spectral resolution applying Doppler-free spectroscopy. The frequency of the

lasers and the narrow-band filter in the receiving system are stabilized to typically 10–100 kHz which is a factor of roughly

10−5 smaller than the Doppler-broadened Rayleigh signal. Narrow-band filtering allows to measure Rayleigh and/or resonance

scattering separately from the aerosol (Mie) signal, all during night and day. Lidars used for VAHCOLI are compact (volume:10

∼1 m3) and are multi-purpose systems employing contemporary electronical, optical, and mechanical components. The units

are designed to autonomously operate under harsh field conditions at remote locations. An error analysis with parameters of the

anticipated system demonstrates that temperatures and line-of-sight winds can be measured from the lower stratosphere to the

upper mesosphere with an accuracy of±(0.1–5) K and±(0.1–10) m/s, respectively, increasing with altitude. We demonstrate

that some crucial dynamical processes in the middle atmosphere, such as gravity waves and stratified turbulence, can be15

covered by VAHCOLI with sufficient temporal/vertical/horizontal sampling and resolution. The four-dimensional capabilities

of VAHCOLI allow to perform time-dependent analysis of the flow field, for example employing Helmholtz decomposition,

and to carry out statistical tests regarding intermittency, helicity etc. First test measurements under field conditions with a

prototype lidar being built for VAHCOLI were performed in January 2020. The lidar operated successfully during a six week

period (night and day) without any adjustment. These observations covered a height range of∼5–100 km and demonstrate the20

capability and applicability of this unit for the VAHCOLI concept.

1 Introduction

Lidars (light detection and ranging) have been applied in atmospheric research since many years. Here we concentrate on the

middle atmosphere, namely on the altitude range 10–120 km. Different techniques have been used to measure, e. g., tempera-
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tures, winds, aerosols, metal densities, as well as atmospheric characteristics deduced from prime observations, such as grav-25

ity waves or trends (see, for example, Hauchecorne and Chanin, 1980; von Zahn et al., 1988; She et al., 1995; Keckhut et al.,

1995; Gardner et al., 2001; Collins et al., 2009, and references therein). Backscattering from molecules (Rayleigh, Raman),

from aerosols (Mie), as well as resonance scattering from metal atoms in the upper mesophere/lower thermosphere have been

applied to deduce number densities (background and metals), temperatures, winds, and important characteristics of aerosols

(size, number densities) such as noctilucent clouds (NLC) and polar stratospheric clouds (PSC). In the standard setup lidars30

perform measurements in the vertical but oblique soundingshave also been applied occasionally, e. g. for the lidars at ALO-

MAR (Arctic Lidar Observatory for Middle Atmosphere Research) and at the Starfire Optical Range (von Zahn et al., 2000;

Chu et al., 2005). Typical altitude and time intervals are 100 m and 10 min, respectively, where much better altitude/time

resolutions have occasionally been achieved. In summary, lidars measure highly relevant atmospheric parameters withhigh

temporal and vertical resolution. The main disadvantage oflidars is that observations are normally made in a single column35

with very limited horizontal coverage, and often only during darkness and, of course, only during clear sky conditions.Lidars

have also been developed for applications on airplanes and balloons which can travel substantial horizontal distancesbut are

limited in resolving temporal/spatial ambiguities (see, for example, Shepherd et al., 1994; Voigt et al., 2018; Frittset al., 2020).

Furthermore, these applications are rather complex and costly and are therefore performed only sporadically. Lidars on satel-

lites, e. g., CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) have also been developed and have40

been used to measure, e. g., PSC (see overviews in Weitkamp, 2009; Winker et al., 2009). However, so far the application of

these satellite lidars regarding middle atmosphere research is restricted due to their limited height coverage. For example, the

spaceborne wind lidar mission ADM-Aeolus (Atmospheric Dynamics Mission Aeolus) aims at observing winds up to 30 km

(Reitebuch, 2012). Some ground-based techniques have beendeveloped to cover larger horizontal distances in the middle at-

mosphere, like the Advanced Mesospheric Temperature Mapper (AMTM) based on airglow emissions in the mesopause region45

(Pautet et al., 2015). Multistatic radars are now availableto measure winds in the upper mesosphere/lower thermosphere with

extended horizontal coverage (Chau et al., 2017; Vierinen et al., 2019). Compared to lidars these techniques cover a rather lim-

ited height range. Quasi-permanent wind observations in the stratosphere and mesosphere are performed applying microwave

technology, however, with rather poor temporal and height resolution of hours to days and several kilometers, respectively (see,

e.g., Rüfenacht et al., 2018, and references therein).50

The VAHCOLI concept of placing a cluster of lidars (’units’)at various locations relies crucially on individual instruments

being specially designed and developed for this purpose. Wetherefore first describe the technical concept and performance

of such a unit. The main idea is to use modern technology to drastically miniaturize and simplify all lidar sub-components

such as laser, telescope, and receiver system, whereas the measurement capabilities shall be similar, or even better compared to

contemporary existing lidars. Furthermore, sophisticated laser spectroscopy methods shall be applied to measure thespectrum55

of the backscattered signal with high spectral resolution,accuracy, and sampling rate. This allows, for example, to separate

backscattering from molecules (Rayleigh) and aerosols (Mie) and to measure Doppler widths and shifts of the backscattered

signal simultaneously. A VAHCOLI-unit shall be robust so that it can easily be operated under field conditions with minimal

infrastructure in automatic day and night operation. A network of several of these lidars shall be placed at various locations,
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and each lidar shall be employed with several oblique beams,so that (apart from vertical) a substantial horizontal range is60

covered simultaneously. Finally, the lidar must be cost-effective and shall operate for long periods of time (several months or

longer) without maintenance. It must still be able to measure various scattering mechanisms to monitor the atmosphere from

approximately 10 to 100 km.

2 Selected technical features of a VAHCOLI-unit

2.1 General65

A compact setup for a VAHCOLI-unit is chosen with an adequatechoice of optical, electronical and mechanical components.

If available, off-the-shelf components regarding optics,mechanics, electronics etc. are used. Major parts of the mechanics

and housing are produced by 3D printing. This allows cost effective and flexible modifications of mechanical components

and mountings of optical subsystems if, for example, the application has to be adjusted to certain scientific requirements or to

specific background conditions. The overall goal is to builda general purpose lidar to allow for observations applying Rayleigh,70

Mie, and resonance scattering. A first prototype of a VAHCOLI-unit is now available and has recently been tested under field

conditions (see section 3). A photo of the prototype and a technical drawing are shown in Fig. 1. Fig. 1

2.1.1 Spectral characteristics of scattered signals and lidar components

The lidars being used for the VAHCOLI concept rely on a careful consideration and measurement of various spectral charac-

teristics of laser frequencies, spectral filters, and backscattered light. We therefore briefly recollect the spectralfeatures of the75

main scattering processes and instrumental components involved (see Fig. 2). The spectral line width (FWHM = full widthFig. 2

of half maximum) of the Doppler-broadened line due to scattering on molecules (Rayleigh) is typically∆νm ∼1500 MHz

(for λ=770 nm, the potassium resonance wavelength currently being used) which is given by the Maxwell-Boltzmann velocity

distribution. The line width is proportional to
√

T
mm

, i.e., it can be used to measure temperatures (T = temperature ;mm =

mean mass of an air molecule). The line widths of resonance lines of metal atoms are again given by Doppler-broadening on80

top of broadening due to atomic physics processes such as natural lifetime and hyperfine-structure. For potassium, the FWHM

is appr. 1000 MHz (von Zahn and Höffner, 1996). The line-width of scattered light caused by aerosols is much smaller since

these aerosols are much heavier compared to molecules. Stratospheric aerosol particles have radii on the order of 0.1µm which

corresponds to a mass of roughly 7·10−6 ng. This is a factor of∼1.5·108 larger compared to the mass of an air molecule.

Therefore, the spectral width of the aerosol signal∆νa is roughly∆νa = ∆νm ·
√

ma

mm
∼ 100 kHz for∆νm=1500 MHz.85

The Doppler shift,dν, of the backscattered signal due to background winds isdν= 2 · νo · v/c which allows to measure line-

of-sight winds (νo = laser frequency,v = background wind). For a laser wavelengths ofλo=770 nm (νo=389.28 THz) and

applying Rayleigh or Mie scattering, this shift isdν= 2.6 MHz for a wind ofv=1 m/s. We also need to take into account the

spectral widths of the instrumental components (see later), namely the spectral widths of the diode-pumped alexandrite laser

(∼3.3 MHz) and the high resolution spectral filter (‘confocal etalon’) in the receiver system (appr. 7.5 MHz). For comparison,90
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the Fourier-transform width of a laser pulse with a length of1000 m (100 m, 1 m) is roughly 60 kHz (600 kHz, 60 MHz).

According to their spectral characteristics, the scattering mechanisms mentioned above are used to measure temperatures and

winds from Rayleigh scattering (‘Doppler-Rayleigh’), temperatures and winds (plus metal number densities) from resonance

scattering (‘Doppler-resonance’), and winds (plus aerosol densities) from Mie scattering (‘Doppler-Mie’).

2.1.2 General lidar setup95

A key idea behind the lidars being used for VAHCOLI is that allrelevant frequencies and spectra (e. g., seeder laser, power

laser, backscattered light from the atmosphere, narrowband filter, reference spectrum) are controlled and measured with high

precision (see later). The atmospheric signal and laser parameters are measured (or actively controlled for the latter) for every

single laser pulse. This allows, for example, to measure thewidths and shifts of the spectrally broadened lines and, in parallel,

determine the spectral characteristics of the receiver in the time between two laser pulses. Narrow band spectral filtering and a100

small field-of-view is applied to reduce the background, which allows to use high repetition frequencies and comparatively low

power laser energies. The laser can be tuned to any given frequency within a large frequency range, and spectra are observed

at these mean frequencies with great detail. This provides,for example, the opportunity to measure the signals from Rayleigh

and Mie scattering separately (see section 3).

The frequency of the power laser is controlled by a so-calledseeder laser. The seeder laser is used i) to control the frequency105

of the power laser, and ii) to measure the spectral specifications of the entire optical path in the receiver system (including the

filter characteristics of the etalons involved) immediately before these filters are being used to measure the spectrally broadened

and shifted backscattered signal from the atmosphere (Rayleigh, Mie, or resonance).

The seeder laser, the power laser, and the signal from the atmosphere are fed into a receiver system (see Fig. 3) whichFig. 3

consists of various optical components such as an interference filter (to block a large part of the solar background spectrum110

not wanted), a broad band solid etalon with a FWHM close to theDoppler width of the atmospheric molecule line, and a

narrow band confocal etalon (FWHM∼7.5 MHz). The largest part of the incoming light is reflected by the confocal etalon

and creates a signal at the detectorDR−R, whereas a small part is transmitted and is measured by the detectorDMie (see Fig.

3). The frequency of the seeder laser is tuned up and then tuned down again. The amplitude of this tuning is, for example,

2000 MHz in order to cover the Doppler broadened Rayleigh signal. The seeder is used to control the frequency of the power115

laser for every single pulse, i. e., every 2 ms. The spectral characteristics of the seeder laser, e. g., the frequency as afunction

of time during tuning up and down, are known precisely due to comparison with a high-resolution Doppler-free polarization

spectrum of potassium, which also serves as an absolute frequency reference in case of resonance scattering for potassium. The

parameters controlling the seeder frequencies can easily be adjusted by software according to the scientific requirements. The

lidar parameters, e. g., the range of the frequency scan, canbe optimized for the measurement of Doppler winds on aerosols,120

or for resonance temperatures, or for a simultaneous observation of Rayleigh, Mie, and resonance scattering.

The frequency of the power laser is nearly identical to the frequency of the seeder laser because a novel cavity control

technology called Advanced Ramp and Fire (ARF) is applied. Aprecursor version of this technology was used since 1998

for the flashlamp-pumped alexandrite ringlaser of the IAP, and later also for Nd:YAG (Nicklaus et al., 2007). ARF allows to

4

https://doi.org/10.5194/amt-2021-33
Preprint. Discussion started: 10 February 2021
c© Author(s) 2021. CC BY 4.0 License.



control the mean frequency shift between seeder and power laser, and it is not limited to a single laser frequency. This allows125

a fast tuning of the power laser to a wide range of frequenciesfrom one pulse to the other. We currently use a maximum

tuning rate of 1000 MHz per milli-second, which can be increased if required. An example of controlling and measuring the

power laser frequency is shown in Fig. 4. The seeder laser (and thereby the power laser) is tuned across the confocal etalon Fig. 4

where the frequency range of the tuning (=100 MHz) was chosensuch that it covers the spectral width of the confocal etalon.

The frequency sampling covers frequencies with a difference of 2 MHz. As can be seen in Fig. 4 the advanced ramp-and-fire130

technique ensures that the frequencies of the power laser pulses are indeed very close to the nominal frequencies,νi (within

less than 100 kHz), namely within the width of each red line inFig. 4. The intensity distribution as a function ofνi is given by

the convolution of the spectral width of the confocal etalonand the spectral width of the power laser (the spectral widthof the

seeder laser is only∼100 kHz and can be ignored in this context). Fig. 4 demonstrates that the frequency control of the power

laser by the seeder laser works very successfully, namely within less than approximately 100 kHz.135

The temporal stability of the laser frequency control is demonstrated in Fig. 5 where measurements of the frequencies ofthe Fig. 5

seeder laser and the confocal etalon are shown. More precisely, in the upper panel the difference between the nominal seeder

laser frequency and the actual true frequency is shown, where the latter is determined by comparison with high precision

Doppler-free spectroscopy. Data points are shown for∼3 min with a temporal resolution of 1/10 s. The mean offset between

nominal and true frequencies is only 21.44 kHz with a RMS variation of 170 kHz. The same procedure is repeated for the140

confocal etalon (lower panel in Fig. 5), i. e., the seeder laser is directed into the confocal etalon, and nominal and ‘true’

frequencies (from the seeder laser) are compared to each other. The mean uncertainty of the confocal etalon frequency is

187.92 kHz which corresponds to an uncertainty in wind measurements of 0.072 m/s. In fact, the final contribution of this

uncertainty to the wind error is even smaller since the offset (in this case 187.92 kHz) is measured and later considered in the

data reduction procedure.145

Finally, the spectrum received from the atmosphere is compared with the spectral characteristic of the instrument including

laser line width, spectral filters etc. For Rayleigh and Mie scattering it is not necessary to know the absolute frequencyof

the laser light and the absolute frequency position of the etalon’s transmission functions. It is only important to knowthe

frequency of the pulsed laser relative to the frequency of the spectral filters which is achieved by the procedure described

above. On the other hand, resonance scattering requires frequency measurements on an absolute frequency scale which is150

achieved by applying Doppler-free polarization spectroscopy to an atomic absorption line of potassium, which in turn is used

to control the output of the seeder laser and the spectral filters with an accuracy of a few kHz (see above).

2.2 Laser specifications

A VAHCOLI-unit requires a compact, efficient, and high performance laser designed for atmospheric applications. For Doppler-

Mie the laser should preferentially have an exceptionally small line-width. For Doppler-resonance the laser must be tunable to155

an atomic absorption line. We have developed a highly efficient, narrow-band diode-pumped alexandrite ring laser in coopera-

tion with the Fraunhofer Institut for Laser Technology in Aachen (Höffner et al., 2018; Strotkamp et al., 2019). The laser head

includes various subsystems such as Q-switch driver, cavity-control, power measurement, and a beam expansion telescope all
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of which are placed in a sealed housing for touch free operation over long periods. The laser head is pumped via a fiber cable

connected to a separate diode array acting as an optical pump. The beam profile of the laser is nearly perfect with very little160

aberration (M2=1.1). The spectral width is∼3.3 MHz with a pulse length of∼780 ns. In Q-switch mode, the variation of the

output power from pulse to pulse is only 0.2%. A first test of the robustness of the laser was performed when it was transported

from Aachen to Kühlungsborn in early 2020. After a transportof nearly 700 km in a standard truck the laser performed without

any degradation (see section 3). Thereafter, the entire lidar was aligned and operated successfully during a six week period

without any further adjustment.165

2.3 Telescope and receiver

The field-of-view (fov) of the telescope is currently 33µrad which corresponds to a diameter of 3.3 m at a distance of 100 km.

The accuracy to keep the laser beam inside the field of view of the telescope is better than 10 cm at 100 km which corresponds

to a position accuracy of better than 1µrad. This is achieved as follows: the photons being scattered by 180 degree from the

atmosphere follow the optical path of the outgoing laser-beam but in retrograd direction. The light from the atmosphereis170

separated from the outgoing laser pulse using its polarization characteristics. This implies that outgoing and incoming light

paths are automatically co-aligned and no active control ofthe outgoing laser beam on a pulse-to-pulse basis is needed.Slow

drifts of the laser beam relative to the optical axis of the telescope caused by, for example, temperature drifts are compensated

for by a control loop (maximizing the atmospheric signal) with a time constant of few minutes. The current plan is to have 5

telescopes with different viewing directions which are fedsubsequently (switching within 1 ms) by one laser. Only one receiver175

system (and one transmitter) will be needed.

The prime mirrow (diameter = 50 cm) and related optics are integrated into a system which is manufactured by large scale

3D printing. Complex thermal balancing considerations ensure that the telescope (optics and walls) are stabilized to the outside

temperature by maintaining an active airflow through the cube. This prevents convection and turbulence and also keeps dust,

snow, and sea salt away from the optics. On the other hand, themechanical structures supporting the primary and secondary180

mirrors are stabilized to the temperature inside the main housing. This eliminates the need to realign the telescope when

ambient temperatures are changing, for example, from day tonight. In summary, the mechanical design and thermal balancing

allow to operate the lidar under harsh conditions at a wide range of ambient temperatures during day and night.

The most important components of the receiver are the spectral filters in combination with other optical systems such as the

seeder laser and the Doppler free spectroscopy (see Fig. 3).All components fit into a compact, optically tight, dust free, and185

lightweight housing of 15 x 15 x 80 cm which is manufactured by3D printing together with all mechanical mounts for the

optical components (∼75 in total). Avalanche Photodiodes (APD) are used for counting photons.

2.4 Data acquisition and lidar control

After a laser pulse has been released, it takes 1 ms until photons scattered at a distance of 150 km arrive at the detector. This

implies that the maximum possible pulse repetition frequency iskmax=1000 laser pulses per second (we use 500 per second),190

assuming that only one laser pulse is in the air at any given time. Photons from a single pulse scattered from a height rangeδz
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arrive at the detector in a time interval of∆t = 2·δz/c. During arrival the number of photonsNph from the height rangeδz

create a count rateRsgl at the detector ofRsgl=Nph/∆t =Nph/(2·δz/c). Here and in the following we ignore any impact by the

dead-time of the detector. The time between two pulses is given by dt=1/k where k is the pulse repetition frequency. Therefore

the effective number of photons counted per time interval isreduced relative toRsgl by a factor of∆t/dt = (2·δz/c) · k. For195

example, forδz=200 m and k=500/s the reduction factor is 1/1500. In other words, the number of photons,Nph, counted per

integration timeδt and height intervalδz is related to the count rate (R) and the pulse repetition rate (k) via

Nph = R · ∆t

dt
· δt = R · (2 · δz

c
· k) · δt (1)

For technical reasons the count rate of typical detectors (PMT, APD) is limited to approximatelyRmax=107 Hz. As

mentioned before, the maximum pulse repetition rate is given by the uppermost altitude (zmax) wanted,kmax=1000/s for200

zmax=150 km. Higher pulse repetition frequencies may be chosen if the maximum altitude is reduced. According to equation

1 this leads to a larger number of photons at a given altitude.The receiver relies on high speed single photon data acquisition

system with compression for fast analysis. Each pulse is stored with 1 m altitude resolution and with further information re-

garding, for example, pulse energy as well as frequency and FWHM of the laser pulse. Each VAHCOLI-unit is connected to

the internet and, if necessary, can be controlled and operated in real time. This includes the frequency control of the seeder and205

power lasers as well as the filter system (see above). The entire receiver system (actually the entire lidar) is based on a single

standard PC with integrated commercially available electronics. Data from the lidar are automatically downloaded to aremote

server.

2.5 Measuring principle

2.5.1 Temperatures and winds from Rayleigh and resonance scattering210

A standard method to derive temperature profiles from measured altitude profiles of number densities is based on the (down-

ward) integration of the hydrostatic equilibrium equation. Since only relative number densities are relevant here, the lidar count

rates from Rayleigh scattering can be applied, after takinginto account the square of the distance (lidar equation). Some uncer-

tainties are introduced by the unknown temperature at the top of the profile (also called ‘start temperature’) which, however,

decrease exponentially with altitude. A more detailed error analysis for Rayleigh temperatures is presented in section 4.2. Note215

that narrow spectral filtering allows to separate the Rayleigh signal from the Mie signal (see below). This implies that Rayleigh

temperatures are derived even in the presence of aerosols. Since the spectral width of the Rayleigh signal is proportional to
√

T

it can also be used to measure temperatures. This is planned for the future, together with a comparison of temperatures from

integration (hydrostatic equation).

Winds are measured by lidars by detecting the spectral shiftof the backscattered light (Rayleigh or resonance or Mie). This220

is rather challenging since this shift is normally small compared to the spectral width of the backscattered signal. Various

techniques have been developed to measure the spectral shift, e. g. employing double-edge or single-edge or vapor filters (see,
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for example, Chanin et al., 1989; She and Yu, 1994; Baumgarten, 2010). In our first measurements presented in section 3 we

concentrated on measuring winds by detecting the spectral shift of the narrow band aerosol signal.

Resonance scattering on metal atoms (K, Fe, Na) has frequently been applied to derive number densities and temperatures225

in the altitude range of roughly 80 to 120 km by measuring the Doppler width of the backscattered light (see, for exam-

ple, Fricke and von Zahn, 1985; von Zahn et al., 1988; Alpers et al., 1990; She et al., 1990; Clemesha, 1995; Chu et al., 2011;

Höffner and Lautenbach, 2009). Different from these lidars, VAHCOLI can observe winds and temperatures from resonance

scattering in the presence of aerosols, namely NLC. The resonance scattering application of VAHCOLI is based on our experi-

ence with a potassium lidar being operated at several locations, for example on the research vessel Polarstern or in Spitsbergen230

(Höffner and von Zahn, 1995; von Zahn and Höffner, 1996; Lübken et al., 2004; Höffner and Lübken, 2007). The technique

has been improved substantially for a VAHCOLI-unit by applying high temporal and high spectral resolution detection of

Doppler broadening (temperatures) and Doppler shift (line-of-sight winds). See section 2.1.1 for more details.

2.5.2 Aerosol parameters and winds

VAHCOLI is designed to also measure the presence of aerosols, more precisely background aerosols, polar stratosphericclouds235

(PSC), and noctilucent clouds (NLC). Precise and fast measurements of the spectrum of the filters allows to position the narrow

spectral filter (few MHz) exactly at the position of the Mie peak related to aerosol backscattering, as is shown in Fig. 2. Since

the Mie spectrum in the stratosphere is also very narrow (typically 0.1 MHz, see above) only the backscattered signal from

aerosols is detected, whereas nearly all of the Rayleigh scattering is blocked (this implies that the solar background signal is

negligible which is known as ‘solar blind’). Therefore, Miescattering is detected irrespective of the Rayleigh signal(and vice240

versa). The precise measurement of spectra allows to deriveline-of-sight winds from the Doppler shift of the Mie peak (see

section 3). In the future, we envisage multi-color observations of PSC and NLC to deduce particle characteristics such as size

and number densities (see, for example, von Cossart et al., 1999; Alpers et al., 2000; Baumgarten et al., 2010).

2.5.3 Metal densities

Resonance scattering on metal atoms in the upper mesosphere/lower thermosphere is applied to derive metal number density245

profiles. We have used this technique mainly to observe potassium (λ=770 nm) and iron (λ=386 nm), but other metals have also

been measured (see, e.g., von Zahn et al., 1988; Gerding et al., 2000; Chu et al., 2011). The capability of VAHCOLI to measure

vertical and horizontal structures in metal densities allows to address several open science questions regarding the causes for

the observed temporal and spatial variability (see section5.5). The current version of the VAHCOLI-units is designed to

detect potassium atoms. In the future we envisage to developnew and compact lasers and/or frequency doubling techniques to250

measure other species, including iron and sodium.
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2.5.4 Other

Several secondary parameters are typically derived from the prime observables such as the potential (Epot) and kinetic energy

(Ekin), momentum flux, and wave action densities. Note that the latter requires to measure the background mean winds in

order to consider the Doppler shifting effect on gravity waves. A Helmholtz decomposition of the flow, i. e., its divergent and255

rotational component, can be applied to better unterstand the physical processes involved. Lidars typically measure relative

number densities, n(z), which allows to determineEpot from

Emass
pot =

1
2
· g2

N2
·
(

∆n

n

)2

(2)

i. e., from number density instead of temperature fluctuations. This allows to reach to higher altitudes and avoids uncertainties

due to the start temperature.260

Since VAHCOLI measures the dynamical and thermal components of the flow field, the heat flux due to fluctuations caused

by gravity waves can also be derived. Statistical quantities are derived from fluctuations, for example longitudinal and transver-

sal structure functions.

2.6 Lidar operation

After manufacturing, installation, and testing in the laboratory, the lidar can be transported to the location of interest where it265

is assembled for operation under field campaign conditions.The lidar is designed as a sealed and automated system, i. e.,it is

controlled remotely and can therefore run for long periods without any manual operation. This includes to stop measurements

on short notice and very quickly (from one pulse to another) if required by, for example, air safety regulations or by bad weather

conditions. Information regarding air safety is currentlyprovided by an internal camera, and weather conditions are monitored

by an external weather station. Further constraints provided by external sources, e. g., a weather radar or air traffic control, can270

easily be incorporated into the lidar operation. If conditions are favorable again, the lidar switches on automatically within less

than one minute.

3 First measurements

In the following we show results from the very first atmospheric measurements by a prototype of a VAHCOLI-unit (‘first light’)

performed in the period 17 to 19 January 2020. Some specifications of this lidar are summarized in Table 1. In Fig. 6 we showTab. 1

Fig. 6

275

raw count rates observed on 19 January 2020 as detected by thedetectorsDR−R andDMie (see Fig. 3). The goal of these

measurements was to perform a first test of the entire lidar, i. e., laser, frequency control and analysis, telescope, detection

system, Doppler free spectroscopy, lidar operation etc., under realistic conditions including rain, low temperatures, and storm,

without touching the system for several days. Note that the FOV of the telescope was only 33µrad which allowed measurements

even during full daylight. According to the description of the lidar presented in section 2.1.2 the confocal etalon is stabilized to280

a certain frequency,νcf , and the power laser is normally tuned by typically±1000 MHz relative to this frequency. In the first
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measurements presented here we concentrated on wind measurements (Doppler-Mie) and have therefore used a much smaller

frequency range for tuning, namely only±50 MHz. In the case shown in Figure 6, the etalon’s central frequency,νcf , was

chosen such that it coincides with the mean resonance frequency of potassium to allow for a detection of the potassium layer.

The etalon transmits backscattered light from the atmosphere within a frequency range ofνcf±∆νcf where∆νcf =FWHM/2285

and FWHM∼7.5 MHz (blue line in Fig. 6). Note that the spectral width of the Mie peak is only∼0.1 MHz which can be

neglected in this context. Furthermore,∆νcf is much smaller than the spectral width of the Doppler broadened Rayleigh

signal, i. e., only a very small fraction of the backscattered light from the atmosphere passes through the etalon, the rest is

reflected and detected by a separate detector (red line in Fig. 6).

At altitudes below the potassium layer the total signal is due to backscattering from molecules (Rayleigh scattering) and a290

small contribution from Mie scattering from aerosols at altitudes below∼30 km. When the frequency of the Mie peak is outside

the frequency range of the confocal etalon,νcf±∆νcf , the backscattered light from the atmosphere detected atDMie stems

from Rayleigh scattering only, whereasDR−R detects Rayleigh (and resonance) scattering plus a small contribution from Mie

scattering. The signal atDR−R is much larger compared toDMie since most of the signal is reflected by the narrow band

confocal etalon (see Fig. 2 and 3). When the power laser frequency is withinνcf±∆νcf , however, the signal atDMie includes295

Mie scattering which varies when scanning the power laser, whereas the contribution from Rayleigh scattering is basically

constant withinνcf±∆νcf because the Rayleigh peak is very flat withinνcf±∆νcf . The signal atDMie can therefore be used

to measure Mie scattering only, which is subsequently used to subtract the Mie signal from the Rayleigh signal. Furthermore,

the signal atDMie is used to derive the Doppler shift of the Mie peak due to winds. In Figure 6 we show signals from the

detectorsDR−R andDMie. The exponential decrease of the Rayleigh signal and some very small ‘bumps’ due to aerosol300

scattering are clearly visible. After subtracting the Mie contribution the signal can be used to determine a temperature profile

(not shown). Note that temperatures can also be derived fromthe spectral width of the Rayleigh signal (not done in this first

test). The Mie signal caused by stratospheric aerosols is roughly 0.1% – 10% of the Rayleigh signal and disappears above

roughly 30 km.

In Fig. 7 we show line-of-sight winds derived from the Doppler shift of the Mie peak observed on 19 January with a heightFig. 7305

resolution of 200 m, integrated for a period of 20 minutes (18:10:00-18:30:00 LT). As can be seen from this Figure, the central

frequency of the spectra changes with height, which is used to calculate line-of-sight winds. Note that the wind uncertainties

shown in the right panel of Fig. 7 deviate substantially fromour estimates presented later (see section 4.1) because theactual

aerosol distribution is rather different and the lidar performance was not yet optimized. We compare these winds to ECMWF

(European Centre for Medium-Range Weather Forecasts) profiles which are closest in time and space (horizontal resolution:310

∼9 km). The height resolution of ECMWF winds are approximately 250 m and 600 m at 5 km and 25 km, respectively. Here

we have assumed somewhat arbitrarily that the lidar picks up4% of the meridional winds corresponding to a off-zenith tilt of

the laser beam by 2.3 degrees. This is certainly realistic when considering that no attempt has been made during this firsttest

to exactly pointing the laser beam to the vertical. In the future the telescope pointing will be measured with high accuracy by

an integrated sensor.315
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The agreement between observations and ECMWF winds is very good considering the constraints regarding temporal/spatial

coverage and sampling, and the fact that this was the very first test of the entire lidar using some preliminary optics. Theresults

shown in Figure 7 demonstrate that the initial optical alignment of the lidar, including laser-beam adjustment relative to the

telescope, was stable under harsh conditions and no re-alignment was required. The performance of the lidar during thisfirst

light measurements was significantly lower compared to expected future capabilities because the telescope and the detection320

system were not yet optimized. As will be explained in more detail in section 6 the efficiency of VAHCOLI-units will be

improved further in the near term future.

4 Vertical/horizontal/temporal resolution and coverage versus accuracy

4.1 Expected performance

The following calculations of sensitivities and uncertainties are based on our experience with a potassium lidar whichwas325

housed in a container and operated in various remote locations such as on the research vessel Polarstern or in Spitsbergen

(von Zahn and Höffner, 1996; Höffner and Lübken, 2007). In Fig. 8 we show expected count rates (R) as a function of altitudeFig. 8

which in this case reaches the maximum possible value of R=1×107 Hz at 20 km. We have assumed a laser power of 6 mJ (next

generation of this laser) and an efficiency of the detector system of 30%. For a typical time and height interval ofδt=5 min and

δz=200 m, respectively, and a pulse repetition frequency of k=500/s this gives the number of photons as function of altitude330

according to equation 1, also shown in Fig. 8. For example, for R=1×107 Hz (at 20 km) the number of photons (at 20 km) in a

time and height interval of of 5 min and 200 m, respectively, isNph=2×106. We have also indicated a typical dark count rate of

20 Hz in Figure 8 which is realistic for state-of-the-art detectors. The green line in Figure 8 gives the temperature uncertainties

according to equation 5 (see later). The blue lines indicatethe errors to measure winds from the shift of the Rayleigh spectrum

(above 20 km) and from the shift of the Mie peak (below appr. 30km). Hereby we have assumed that at 30 km the Mie335

signal is 0.5% of the Rayleigh signal increasing to 10% at 10 km. These values are consistent with typical observations of

Mie scattering from stratospheric aerosols but may vary substantially throughout the season and from one location to another

(Langenbach et al., 2019).

The calculation of the wind error is based on our experience that it takes approximately 100,000 photons to measure a wind

with an accuracy of 1.35 m/s. Within limits (background noise etc.) the accuracy is proportional to the square-root of the340

number of photons. As can be seen in Figure 8, winds can be measured with high precision, i. e., better than 1 m/s below 40 km

and 10 m/s below 70 km, respectively. Due to the small line width, Mie scattering is particularly suitable for measuring winds.

In Figure 8 we also indicate the number of photons expected from an NLC layer assuming a backscatter coefficient at the peak

of β=30·10−10/(m · sr) (see, for example, Fiedler et al., 2009). We also show typical backscattered signal from a potassium

layer with a maximum number density of 50 atoms/cm3.345
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4.2 Error analysis for Rayleigh temperatures

As is explained above, the lidars being built for VAHCOLI canmeasure the Rayleigh signal without contamination due to

aerosols. We consider altitudes sufficiently below the uppermost height where uncertainties due to the start temperature are

negligible. Starting from an altitude bin centered at z1 with a temperature T1 and number density n1, the following equation

gives the temperature error in the next height bin (at z2) due to uncertainties in density measurements∆n1 and∆n2 at level z1350

and z2, respectively:

∆T2 = exp
(
−z2− z1

Hp

)
· n1

n2
·T1 ·

√(
∆n1

n1

)2

+
(

∆n2

n2

)2

(3)

wheren2 is the number density in the altitude bin centered atz2, andHp is the pressure scale height. This equation can be

further simplified by assuming thatHp ≈Hn within a height interval ofδz= z2− z1 (which is typically a few hundred meters

only) and that the uncertainties inni are determined by Poisson statistics of countingNi photons, i. e.355

∆ni

ni
=

∆Ni

Ni
=

1√
Ni

; (i=1,2) (4)

SinceN1 ≈N2 within the height intervalδz we finally get:

∆T ≈ T ·
√

2
N(z)

(5)

The number of photons counted per time and altitude interval, N(z), decreases with altitude according to

N(z) = Nref ·
(zref

z

)2

· e−(z−zref )/Hn (6)360

whereNref is the number of photons counted at the reference altitudezref , andHn is the number density scale height. In

Fig. 9 altitude profiles of temperature errors according to equation 5 are shown assuming a number of photons at the reference Fig. 9

level (20 km) ofNref =2×106 (see above) andNref =2×105, respectively. Since count rates are normally suppressed at lower

altitudes (to avoid a saturation of detectors) they may be increased at higher altitudes, for example by reducing the attenuation

in the receiver. Using telescopes with appropriate diameters is another method to focus on certain altitude ranges. In Fig. 9 we365

have assumed an enhancement of N due to ‘cascading’ by a factor of 100 (forNref =2×106) at altitudes above 50 km which

leads to a reduction of∆T by a factor of 10. In total, typical temperature errors are smaller than 5 K up to the upper mesosphere.

Another method to increase the effective count rate is to increase the height range (δz) and/or the integration time (δt). In Fig.

10 the effect of increasingδt and/orδz on temperature errors is shown. More precisely, temperature errors (∆T ) are shown as Fig. 10

a function of g = (δt·δz)/(δtref ·δzref ) whereδtref =5 min andδzref =200 m, and the number of photons at the reference level370
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(zref =20 km) isNref =2·106. For example, increasingδz·δt by a factor of 60 (e. g., by increasing the integration time from

5 min to 1 hour and the height interval from 200 m to 1 km) decreases the temperature error at 50 km from∆T=5.3 K (g=1) to

∆T=0.7 K (g=60).

4.3 Multi-beam operation and horizontal coverage

The flexibility of VAHCOLI allows to place the lidars at distances which are optimized according to the science objectives (see375

below). The current plan is to build four VAHCOLI-units (NV =4) with five beams (NB=5) each, where one beam is pointing

vertically and 4 beams are pointing at a zenith angle of e. g.χ=35◦ in two orthogonal directions. In Fig. 11 (upper panel) anFig. 11

example of a constellation of four VAHCOLI-units with five beams each is shown. At any given altitude there are a total of

NL=5×4=20 laser beams available, which gives a total of
∑NL−1

i=1 i=190 combinations of horizontal distances. In the lower

panel of Fig. 11 these 190 horizontal distances are shown (abscissa) for a selection of 12 different scenarios (ordinate), including380

the scenario shown in the upper panel of Fig. 11. Horizonal scales from several kilometers up to hundreds of kilometers are

detectable where nearly all directions in the horizontal plane are covered. Even quasi-equal horizontal distances contain rather

important information since they are located at different places (non-homogeneity) and/or point in different directions (non-

isotropy).

If the beams in all four lidars are aligned equidistantly themaximum horizonal coverage is (NV×(NB-2) -1)×∆x(z) =385

11×∆x(z), where∆x(z)= z·tan(χ) is the (altitude dependent) horizonal distance between twobeams. For example, forχ=35◦

the horizontal distance between two beams at 50 km is 35.0 km and the maximum horizontal distance covered by 4 lidars

which are located at equal horizontal distances is 385 km. Many other scenarios may be chosen, for example concentratingon

smaller scales by placing the systems very close to each other and choosing a small zenith angle with similar azimuths. On

the other hand, several VAHCOLI-units may be located at distances of several hundred kilometers to concentrate on processes390

on synoptic scales. Any combination of such scenarios may bechosen, of course, depending on the availability of lidars and

appropriate locations.

5 Science capabilities

5.1 General

Dynamical processes on medium spatial scales (up to severalhundred km) are important for the atmospheric energy and395

momentum budgets which are directly relevant for climate models on regional and global scales (see, e. g. Becker, 2003;

Shepherd, 2014). More specifically this concerns the question how energy and momentum are transferred from large to small

scales (or vice versa?) and how the horizontal/vertical transport of energy, momentum, and constituents are describedcorrectly.

A prominent example of dynamical impact on the background atmosphere is the summer mesopause region at high latitudes

where temperatures deviate by up to 100 K from a state which iscontrolled by radiation only. This strong deviation is primarily400

caused by gravity waves which deposit energy and momentum and lead to a ‘residual circulation’ and related upwelling and
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cooling. Major aspects of this dynamical control of the atmosphere are only poorly understood due to the complexity of

the problem, both from the experimental and theoretical point of view. In models, the impact of these processes is typically

considered by parameterizations. If, or if not, these parameterizations adequately describe the real atmosphere can best be

verified by comparing models with observations which are capable of fully characterizing the atmospheric variability at these405

medium scales. Temporal and spatial variability is observed in the atmosphere at a large range of scales which reflect various

processes and their (mostly) non-linear interactions. Since these fluctuations vary in time and space it is necessary tomeasure

spatial and temporal variations of, e. g., winds and temperatures simultaneously to achieve a complete picture.

The ultimate aim of VAHCOLI is to characterize the three-dimensional and time-dependent morphology of atmospheric

flow, including gravity waves. This allows to disentangle temporal from spatial variability of the main flow and associated410

fluxes and to test frequently assumed simplifications in modeling (and some observations) regarding homogeneity, isotropy,

and stationarity. In this paper we concentrate on medium scales, i. e., horizontal distances of one to few hundred kilometers,

and vertical distances of 100 m to several kilometers.

It is often assumed that atmospheric processes on medium scales are stationary which is very unlikely to be true in general

since energy and momentum are continuously removed from theflow. If, or if not, this assumption is perhaps valid within415

certain limits or within certain scales may be verified by comparing with suitable observations spanning a sufficient range of

temporal and spatial scales. Other assumptions include isotropy and homogeneity, for example regarding fluctuations in zonal

and meridional direction. Again, such similarities are rather unlikely because normally the background flow is systematically

different in zonal compared to meridional directions.

There are several rather fundamental questions in atmospheric dynamics where VAHCOLI can contribute to a better un-420

derstanding. For example, are the governing processes of fluctuations at spatial scales larger than the buoyancy scale (Lb, see

below) determined by saturation of breaking gravity waves or by un-isotropic large scale turbulence being damped vertically

by buoyancy, or by a combination of both? Which type of instability is most relevant in a specific situation, velocity shears

(Kelvin-Helmholtz instabilities) or convective instabilities ? Another fundamental aspect of atmospheric variability regards the

question if spectra are separable, i. e., if they can be expressed in the form425

A(ω,kx,ky,kz)
?= A0(ω) ·A1(kx) ·A2(ky) ·A3(kz) (7)

Separability is frequently assumed to be valid but there is no fundamental reason why this should be the case (Fritts and Alexander,

2003). VAHCOLI aims at contributing to a better understanding of these fundamental aspects with observations of winds and

temperatures with substantial temporal and spatial resolution and coverage.

In atmospheric science the variability of winds and temperatures is frequently characterized by a spectral indexξ in the430

expression kξ (k = wavenumber). For example, zonal winds (u) as a function of horizontal wavenumber (kh) in the range

from few to several hundred kilometers follow a quasi-universal lawu(kh)∼ k
−5/3
h (Nastrom and Gage, 1985). Keeping the

temporal and spatial variability of the atmosphere in mind it may require several days of averaging to actually observe such

a behavior (Weinstock, 1996). Furthermore, measuringξ alone may not be sufficient to characterize the underlying physical

14

https://doi.org/10.5194/amt-2021-33
Preprint. Discussion started: 10 February 2021
c© Author(s) 2021. CC BY 4.0 License.



process unambiguously. For example, gravity waves and stratified turbulence (see below) may exhibit the same spectral behav-435

ior in a specific situation, although the fundamental concepts are very different. In any case, the spectral representation should

include as many observables as possible (zonal/meridional/vertical winds, temperatures, kinetic/potential energies, wave action

density, momentum flux, etc.) in terms of vertical/horizontal wavenumbers and frequencies.

A powerful tool to describe atmospheric flows is to apply a Helmholtz decomposition, namely to separate the kinetic energy

of the flow into divergent and rotational components:440

Ekin(k) = Erot(k)+ Ediv(k) (8)

This sometimes allows to distinguish different physical processes from each other (see below). Obviously, this requires

3d-observations of the flow. Furthermore, since this separation may vary in time, a time-resolved measurement of the entire

horizontal wind vector is required, as is planned for VAHCOLI.

5.2 Gravity waves445

Lidars have frequently been applied to measure gravity waves, both in case studies and also deducing climatologies (see

Hauchecorne and Chanin, 1980; Liu and Gardner, 2005; Rautheet al., 2008; Kaifler et al., 2015; Chu et al., 2018; Baumgarten et al.,

2017; Strelnikova et al., 2021, for some examples). More recently, lidars have been applied to simultaneously detect GWin

temperatures and winds in the middle atmosphere and to applyhodograph methods which allows to derive potential and kinetic

energy and to separate upward and downward propagation (Baumgarten et al., 2015; Strelnikova et al., 2020). Note that back-450

ground winds are needed to determine Doppler shifting whichis essential, for example, to unambiguously separate upward and

downward progression of gravity waves, where the latter could for example be due to secondary wave generation (Kaifler etal.,

2017; Becker and Vadas, 2018). Sometimes only certain partsof the GW field are measured and dispersion and polarization

relations are applied (plus further assumptions regardingisotropy and/or stationarity) to derive quantitative results (Ern et al.,

2004; Pautet et al., 2015).455

To exploit the capabilities of VAHCOLI of studying gravity waves, we concentrate on waves with medium frequencies, i.

e., ω̂≫f∼10−4/s at mid latitudes (̂ω = intrinsic frequency, f = Coriolis parameter). Corresponding periods are smaller than

roughly 17 h and, of course, larger than the Brunt-Väisälä (BV) period of several minutes. SinceEdiv/Erot=ω̂2/f2 ≫1 this

implies that the divergent part of the GW flow is much larger compared to the rotational component.

The dispersion relation for gravity waves (assuming thatλz ≪4π·H) is460

ω̂

N
=

√
k2

x + f2

N2 · k2
z

k2
x + k2

z

≈ kx√
k2

x + k2
z

= cos(ϕ) for N ≫ f (9)

where N is the Brunt-Väisälä frequency, andϕ is the angle between the phase propagation direction and thehorizontal

direction (see Dörnbrack et al., 2017, for a recent summary on lidar applications for atmospheric GW detection). For intrinsic

periods significantly larger than the Brunt-Väisälä period(but still smaller than f), we havêω/N ≪ 1, i.e.,ϕ∼90◦, i. e., the
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phase progression is nearly vertical. We note, that lidars are also capable of detecting GW with larger periods, i. e. inertia465

gravity waves, both in winds and temperatures (Baumgarten et al., 2015).

A graphic representation of the dispersion relation is shown in Fig. 12. Several investigations have studied the specifics of Fig. 12

GW which normally propagate from low to high altitudes including the question which part of these GW can be observed by

satellites (see, for example, Preusse et al., 2008; Alexander et al., 2010). We do not include radiosondes and balloons here

due to their sporadic nature and limited height coverage. Satellites can only observe GW with typical horizontal/vertical470

wavelengths larger than appr. 50-100 km and 3–5 km, and periods larger than typically 1-2 hours. However, the effect of

high frequency waves on the circulation is crucial since thevertical flux of horizontal pseudo-momentum is given byFP =

u′w′ ·ρ·(1−f2/ω̂2) which is largest for mid and high frequency gravity waves, e.g., whenω̂≫ f (Fritts and Alexander, 2003).

As can be seen from Figure 12 VAHCOLI covers an important partof the gravity wave spectrum which is not accessible by

satellites, in particular waves with small horizontal wavelengths and small periods (large frequencies). As mentioned before,475

the phase of these waves preferentially propagates vertically, e. g., the energy propagates obliquely.

The aim of VAHOCLI is to characterize the three-dimensionaltime-dependent morphology of gravity waves. A compre-

hensive characterization of gravity wave propagation requires to measure the three-dimensional vector of phase propagation, i.

e., the vertical and the horizontal components. Horizontalfluxes of gravity wave momentum are typically ignored (compared

to vertical) in middle atmosphere modeling where it is oftenassumed that the effect of gravity waves takes place directly480

above the source and instantaneously. It is known from modelstudies, however, that GW can propagate over large horizontal

distances before depositing momentum and energy (Alexander, 1996; Ehard et al., 2017; Stephan et al., 2020). Furthermore,

a background varying with time can change the propagation ofGW (e. g., by refraction) and can drastically modify the de-

position of momentum and its effect on the background flow (Senf and Achatz, 2011). Simulations of GW propagation show

that the horizontal distance between wave packets usually increases with altitude (see, for example, Alexander and Barnet,485

2007). This is favorable for VAHCOLI since the horizontal distance between obliquely pointing beams also increases with

altitude (see Figure 11). Furthermore, it is known that the spatial and temporal distribution of gravity wave sources influences

their effect on middle atmosphere dynamics (Šácha et al., 2016). A more fundamental question addresses the role of non-linear

interactions of gravity waves compared to a quasi-linear superposition. This leads to rather different concepts regarding grav-

ity wave parametrization (Lindzen, 1981; Gavrilov, 1990; Fritts and Lu, 1993; Medvedev and Klaassen, 1995; Hines, 1997;490

Becker and Schmitz, 2002). It could well be that the applicability of one concept or the other depends on the temporal/spatial

scales under consideration. In order to measure and study the effects outlined above it is obviously necessary to observe grav-

ity waves in all directions over a longer period of several hours or even days, and with sufficient horizontal coverage. Such

instrumental capabilities are envisaged for VAHCOLI.

5.3 Stratified turbulence (ST)495

The concept of stratified turbulence (ST) has recently been developed to explain the energy cascading in stratified flows at

mesoscales as an alternative to classical linear or non-linear breakdown of gravity waves. This transfer is relevant for the

momentum and energy budgets which affect the Lorenz cycle and thereby (regional) climate modeling. Lindborg (2006) has
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developed an energy cascade theory for these scales in a strongly stratified fluid which involves horizontal and verticallength

scales as well as kinetic and potential energy. The theory ofST has recently been applied to wind measurements by radars in500

the mesopause region (Chau et al., 2020).

ST resembles the well-known energy spectra (horizontal kinetic energy and potential energy) characterized byk
−5/3
h

(Nastrom and Gage, 1985). This theory invokes strong non-linearities (in contrast to 2D-turbulence and to weakly nonlin-

ear interacting gravity waves) and the cascading of energy from large to small scales (see, for example Billant and Chomaz,

2001; Lindborg, 2006; Brethouwer et al., 2007; Lindborg, 2007, and references therein). It covers horizontal scales smaller505

than synoptic scales (Lh) and larger than buoyancy (Lb) and Ozmidov (LO) scales, and it covers vertical scales betweenLb

andLO. The Ozmidov scaleLO=
√

ǫ/N3 describes the largest scales in classical isotropic Kolmogorov turbulence which are

not effected by buoyancy (N=∼0.02/s ;ǫ = energy dissipation rate of turbulence). The buoyancy scale Lb=uh/N (uh= typical

horizontal velocities of ST) characterizes the largest vertical scale of stratified turbulence, whereasLh= uh
3/ǫ is the largest

horizontal scale of ST structures. Variability at scales larger thanLh are related to large scale processes dominated by the510

Coriolis force. Introducing typical Kolmogorov isotropicturbulence velocities,ut=
√

ǫ/N , several relationships can be de-

rived, such asLh/Lb=(uh/ut)2 andLh/LO=(uh/ut)3. The magnitude of the outer scale of ST (Lh) is typically a few hundred

kilometers (see, for example Avsarkisov et al., 2021).

Order of magnitude estimates for velocities and time constants related to these scales are derived from expressions such as

uh= 3
√

Lh · ǫ andτh= Lh/uh. Applying typical values, namely N=0.02/s (BV period = 5min), ǫ=100 mW/kg, andLh=100 km515

results in the following order-of-magnitude values:Lb=1.01 km,LO=0.112 km,uh=21 m/s,ut=2.24 m/s,uh/ut=9.6, and

τh=77 min, respectively. A collection of relationships and representative values is presented in Table 2. A more detailedTab. 2

representation of spatial and temporal scales as well as velocities associated with stratified turbulence is shown in Fig. 13 for Fig. 13

a large range ofǫ-values. Note that most quantities depend on season, latitude, and altitude (regardingǫ see, for example,

Lübken, 1997). Some dimensionless numbers are frequently used to characterize the relevance of physical processes. For520

example, the horizontal Froude number, which is the ratio ofinertial to buoyancy forces, must be small to allow for ST to exist:

Frh≪ 1. Note thatFrh= uh/(N · Lh) = Lb/Lh= ǫ/(N · uh
2). IndeedFrh is very small for the examples shown in Table 2.

Another relevant parameter is the buoyancy Reynolds number, Reb= ǫ/(ν ·N2), which should be large both for ST and for

the Kelvin-Helmholtz instability regime (ν = kinematic viscosity). In the height range from the lower stratosphere to the upper

mesosphere, and turbulence intensities ofǫ=10 mW/kg andǫ=100 mW/kg this parameter varies betweenReb=2.5×105 to525

Reb=25 andReb=2.5×106 to Reb=250, respectively, i. e.,Reb is indeed much larger than unity. Regarding the applicationof

VAHCOLI we note that the requirements to cover ST scales, namely a vertical/horizontal resolution of 200m/2km, a horizontal

coverage of up to 200 km, and temporal and velocity resolutions of 10-20 min and 0.5-1 m/s, respectively, are well within the

instrumental capabilities of VAHCOLI. The temporal development of the flow is important to judge various forcings, energy

injection, the conversion ofEpot andEkin, and the transition to stationary conditions (see, e.g., Lindborg, 2006).530

There are several aspects of ST theory which are particularly relevant for a comparison with observations by VAHCOLI.

For addressing the question, if energy is cascading from large to small scales (‘forward’) or the other way around (’inverse’)

it is helpful to consider not only the horizontal kinetic energy spectra (typically from aircraft observations) but also the ver-
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tical spectra of horizontal kinetic and potential energy, typically from balloon borne observations (Li and Lindborg,2018;

Alisse and Sidi, 2000; Hertzog et al., 2002). Note that a fundamental scale invariance of the Boussinesq equations in thelimit535

of strong stratification implies an equi-partitioning of potential and kinetic energy (Billant and Chomaz, 2001). Regarding

spectra, the ST theory (invoking downscale energy flow) predicts that vorticityΦ(k) and divergenceΨ(k) spectra should be

of similar magnitude,Φ(k)≈Ψ(k), whereas for spectra dominated by gravity waves one would expectΦ(k)≪Ψ(k), and for

stratified turbulence dominated by vortical coherent structures one expectsΦ(k)≫Ψ(k). Furthermore, it is helpful to measure

spectra of longitudinal and transversal velocity structure functions simultaneously (Lindborg, 2007).540

In summary, the expected horizontal and vertical coverage of the flow field by VAHCOLI will allow to study details of

the relationship between rotational and divergent components of mesoscale dynamics including the important question, how

energy is transfered from large to small scales. The instrumental capabilities of VAHCOLI will cover spatial and temporal

scales being highly relevant for mesoscales. Apart from theHelmholtz decomposition there are other important quantities,

such as the helicity, H=v · rot(v), which may be helpful to separate vortical coherent structures from GW and to characterize545

the flow and its potential impact on the background atmosphere (Marino et al., 2013). Again, such a comprehensive analysis

requires a 3d-characterization of the flow field, as is envisaged for VAHCOLI.

5.4 Other dynamical parameters

There are several dynamical processes in the atmosphere which take place at spatial or temporal scales which are normally out-

side the range of VAHCOLI, at least for the time being. For example, the smallest scales of inertial range turbulence are on the550

order ofLη = (ν3/ǫ)1/4. Measuring fluctuations atLη scales offers a unique chance to unambiguously determineǫ (Lübken,

1992). However,Lη varies by several orders of magnitude from the troposphere to the upper mesosphere and is in the range of

centimeters to several meters only. It will be challenging to detect fluctuations at these scales by, for example, placing several

VAHCOLI-units very close to each other. On the other hand, measuring the longitudinal and transversal structure functions of

winds and temperatures at somewhat larger scales also allows to derive reasonable estimates ofǫ. Furthermore, we envisage555

to measure the spectral broadening of the stratospheric aerosol signal to an extent that allows to deduce turbulent velocities.

Note that typical turbulent velocities are on the order of 1 m/s (see Table 2) which corresponds to a spectral broadening of the

Mie peak of 2.5 MHz. This is much larger than the Doppler broadening of the Mie peak due to Brownian motions (roughly

0.1 MHz).

Trace constituents may sometimes be used as passive tracersfor transport and mixing. This mainly concerns vertical and560

horizontal advection and mixing of stratospheric aerosolsand noctilucent clouds, but also the transport of metal atoms. Care

needs to be taken when interpreting such measurements sincethese constituents may not be passive tracers, i. e., they may

experience modifications, for example, by variable background temperatures. In the future we envisage to measure smallscale

turbulence (see above) and to improve the spatial resolution of aerosol observations to an extend that the eddy correlation

technique to measure turbulent transport should be applicable.565

On the other side of the spectrum of scales, tides are global scale phenomena with horizontal wavelengths of several

hundred kilometers. Certainly, the relevant periods and vertical wavelengths are within the scope of standard MLT lidars
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(see Baumgarten et al., 2018, for a recent example). Regarding horizontal wavelengths, one could consider placing several

VAHCOLI-units at very large distances.

Dynamical phenomena are frequently characterized by calculating statistical quantities, such as the variance and higher mo-570

ments (skewness, kurtosis, etc.) as well as intermittency.Due to the operational advantages of VAHCOLI (low cost, unattended

operation, low infrastructure demands, long-term stability etc.) there is an opportunity to extend such an analysis tobi- or

multi-variate distributions, for example, correlating wind components at various places with each other, or with temperatures.

5.5 NLC, PSC, background aerosols, and metal densities

Ice layers in the summer mesosphere at middle and polar latitudes are known as NLC (‘noctilucent clouds’) (Gadsden and Schröder,575

1989). They exhibit a large range of temporal/spatial variability which can even be observed by naked eye or by camera. Most of

these variations are presumably related to gravity waves, tides, and associated instability processes (see Baumgarten and Fritts,

2014, for a more recent example). NLC are studied in great detail by modern lidars which sometimes detect temporal fluctua-

tions on time scales down to seconds, or other unexpected characteristics (Hansen et al., 1989; Alpers et al., 2001; Gardner et al.,

2001; Kaifler et al., 2013). NLC are frequently used in modelsdescribing dynamical phenomena such as gravity wave break-580

ing (Fritts et al., 2017). This raises the question, up to which scales NLC can be treated as passive tracers. Note that several

processes act on similar temporal and spatial scales, for example, nucleation, sedimentation, and horizontal transport. Further-

more, there is an impressive amount of observations of mesospheric ice clouds available from satellites, which sometimes show

unexpected temporal and/or spatial variations (’voids’) (see Russell III et al., 2009, for details on a more recent satellite mission

dedicated to NLC science). Understanding the physics of NLCis important, for example, to interpret long term variations of ice585

layers and their potential relationship to climate change (Thomas, 1996; von Zahn, 2003; Lübken et al., 2018). Similar science

questions occur regarding PSC, which also play a crucial role in ozone chemistry. Very thin layers of background aerosols

have been observed in the stratosphere which are presumablycaused by intrusion of mid-latitude air into the winter polar

vortex (see, for example, Plumb et al., 1994; Langenbach et al., 2019). Several VAHCOLI-units could be placed at appropriate

locations, e. g., at the edge of the polar vortex, to observe the temporal and spatial development of such intrusions.590

For solving some of the open science questions regarding NLC, PSC, and background aerosols, it is very helpful to distin-

guish between temporal and spatial (horizontal) variations, and to know the status of the background atmosphere. VAHCOLI

is designed to detect these aerosol fluctuations and to observe background temperatures and winds simultaneously by applying

high resolution spectral filtering (see section 2.5.2).

Despite substantial progress in recent years, the physics and chemistry of metal layers still leaves many open questions,595

for example, regarding their (meteoric) origin, their spatial and seasonal distribution, the impact of diffusion and turbulent

transport, as well as the effect of gravity waves and tides onnumber density profiles (see Plane, 2003, for a recent reviewon

mesospheric metals). The morphology of metal profiles offers a variety of phenomena on short spatial and temporal scales,

such as sudden (sporadic) layers and their connection to ionospheric processes, or the uptake of metal densities on ice particles

(see, i.e., Hansen and von Zahn, 1990; Alpers et al., 1993; Collins et al., 1996; Plane et al., 2004; Lübken and Höffner, 2004).600
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Many of these anomalies can best be studied by distinguishing temporal from spatial variations. VAHCOLI is designed to

observe metal layers (potassium for now) at various locations with high time resolution.

6 Outlook and Conclusion

Several improvements regarding the technical performanceof lidars being used for VAHCOLI are currently in progress orare

foreseen for the near term future. This concerns, for example, the optical layout of the telescope, the development of multi-605

beam operation, and the output of the power laser. A power increase of up to several Watt applying ring-laser technology is

currently under development, even without employing a separate amplification stage. The VAHCOLI-units are designed tobe

extended to further wavelengths, for example by installinga second seeder laser and a SHG (second harmonic generation)to

simultaneously apply resonance scattering on potassium (λ=770 nm) and iron (λ=386 nm), all during night and day. Stimulated

Raman emission may also be considered for producing laser light in the infrared.610

The robust and compact design of the VAHCOLI-units and theirstand-alone operation capability allows to consider some-

what extraordinary operations, for example on air planes, balloons, ships or trains, or at remote places such as Spitsbergen or

Antarctica. Some of these applications have been proven to be realistic, however so far with a substantial effort regarding techni-

cal realization, man-power, and costs (von Zahn et al., 1996; Höffner and Lübken, 2007; Lübken et al., 2017; Chu et al., 2018).

VAHCOLI may also be extended to other wavelengths being relevant for thermospheric or space applications (Höffner et al.,615

2018; Munk et al., 2018; Höffner et al., 2019). Due to its compact design and autonomous operation a VAHCOLI-unit may also

be of interest for measurements from satellites (Strotkampet al., 2019). The final aim is to further improve the VAHCOLI-units

and to develop a cost-effective multi-purpose lidar where several systems may be employed at various locations, being operated

quasi-autonomously.

In summary, we have presented the VAHCOLI concept which consists of a cluster of lidars (‘units’) to study the middle620

atmosphere in four dimensions, namely high temporal, vertical, and horizontal resolution and coverage. The concept relies on

the development of a new type of lidar which is compact (∼1m3), can be operated stand-alone during night and day (even

under harsh field conditions), and still offers a performance which is comparable to, or even better than existing lidars. The

innovative approach for this lidar is based on very fast and high spectral resolution spectroscopy. Apart from a narrow band

spectral filter in the detector system (confocal etalon: 7.5MHz) the key component of the new lidar is a newly developed625

diode-pumped alexandrite laser which offers a small line-width of∼3.3 MHz which is significantly better compared to most

lasers currently being used in lidars (e. g. Nd:YAG and lasers pumped by Nd:YAG:∼50–100 MHz). The laser is flexible

and can be tuned quickly over, for example, a Doppler broadened line originating from atmospheric Rayleigh or resonance

scattering. At the same time the laser can also cover a large frequency range and may be used for other absorption lines.

The flexibility of the lidar allows to concentrate and optimize the performance regarding certain height ranges or atmospheric630

parameters, for example, measuring winds from stratospheric aerosols or temperatures from resonance scattering in the upper

mesosphere/lower thermosphere. For the first time, temperatures and winds from Rayleigh and/or resonance scattering can be

deduced in the presence of aerosols (stratospheric aerosols, noctilucent clouds). The compact layout of the lidar reduces the
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requests on optical alignment. Since these lidars allow autonomous operation under harsh field conditions at remote locations,

they are ideally suited for the VAHCOLI concept, namely to employ a cluster of these units to simultaneously cover atmospheric635

parameters in the vertical and horizontal direction with sufficient spatial and temporal resolution. The units shall becost-

effective using off-the-shelf components and 3d-printingof mechanical subsystems. In this paper we have discussed some

relevant science applications of such observations, for example regarding gravity waves and stratified turbulence. Wehave

presented measurements of a first prototype of such a lidar which demonstrates the suitability of the new lidar for VAHCOLI.

This paper has addressed just a selection of the numerous future application scenarios of VAHCOLI.640
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laser power 1 W

repetition rate 500 Hz

laser energy per pulse 2 mJ

laser pulse length 780 ns (234 m)

laser beam profile M2=1.1

laser beam divergence ∼10-15µrad

telescope field-of-view 33µrad

∆ν of power laser 3.3 MHz

∆ν of seeder laser ∼0.1 MHz

wavelength 769.898 nm ; K(D1)

∆ν of interference filter 150 GHz

∆ν of broad band etalon 1000 MHz

∆ν of confocal etalon 7.5 MHz

∆ν = spectral width (FWHM)

Table 1.Specifications of the prototype lidar being used for the firstmeasurements in January 2020.
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Lh=100 km Lh=400 km

ǫ=10 ǫ=100 ǫ=10 ǫ=1001)

Lη = (ν3/ǫ)1/4 0.100 0.056 0.100 0.056

LO =
√

ǫ/N3 35 112 35 112

Lb = uh/N 500 1077 793 1709

Lh = uh
3/ǫ is given above

ut =
√

ǫ/N = LO· N 0.71 2.24 0.71 2.24

uh = 3
√

Lh · ǫ = Lb· N 10.0 21.5 15.9 34.2

τO = LO/ut= 1/N 0.83 0.83 0.83 0.83

= τb= Lb/uh=1/N

τh = Lh/uh= Lh/(Lb· N) 167 77 420 195

= (uh/ut)2 / N

LO/Lη = Reb
3/4 354 1988 354 1988

Lb/LO = uh/ut= 1/Frh
1/2 14 10 22 15

Lh/Lb = (uh/ut)2 200 93 504 234

= uh
2· N / ǫ = 1 / Frh

Lh/LO = (uh/ut)3 = 1/Frh
3/2 2826 894 11304 3574

Reb = ǫ/(ν·N2) 2500 25000 2500 25000

1) ǫ in mW/kg. All lengths in m, all velocities in m/s, all time constants in minutes.

Table 2.Length scales, typical velocities, time constants, and various ratios of length scales relevant for (stratified) turbulence. The scales are

shown for two cases ofLh, namelyLh=100 km andLh=400 km, as well as for two cases of energy dissipation ratesǫ, namelyǫ=10 mW/kg

andǫ=100 mW/kg. For the kinematic viscosity a value ofν=0.01 m2/s was chosen which is typical for an altitude of 45 km (note that ν

increases exponentially with increasing height). See textfor more details.
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Figure 1. Foto and technical drawing of a lidar being used for VAHCOLI.Some important parts can be recognized, such as the telescope, the

seeder laser, and the PC. Temperature control and stabilization (different for different sections) is realized using air ventilation and a water

cooling system. The dimensions of a VAHCOLI-unit (without the wheels and with closed hatch) are 96 cm x 96 cm x 110 cm (length x width

x height). The weight is approximately 400 kg, and the power consumption 500 Watt under full operation.
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Figure 2. Schematic of typical spectral widths (FWHM) relevant for VAHCOLI. The spectral widths (in MHz) are given in the insert. Blue:

Doppler broadened Rayleigh signal (same order of magnitudefor resonance scattering), red: Mie scattering by aerosols, green: spectrum of

the power laser, orange: spectrum of the confocal etalon (free spectral range: 1000 MHz), in this case centered at the Miepeak. Doppler

shifting by background winds leads to a shift of approximately 2.6 MHz for a wind of 1 m/s.
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Figure 3. Sketch of a lidar being used for VAHCOLI. The frequency of thepower laser (green) is controlled by a seeder laser (blue) which

itself is controlled by high precision Doppler free spectroscopy. When the chopper is open, the signal from the atmosphere (red) is fed into

the receiver system which consists of a broad band interference filter (IF,∆ν=150 GHz), a broad band etalon (∆ν=1000 MHz), a narrow

band confocal etalon (∆ν=7.5 MHz), and detectors for the Rayleigh/resonance (‘R-R’) and Mie channels. When the chopper is closed, parts

of the seeder and power lasers are fed into the receiver system to measure their frequencies.
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Figure 4.Measurement of the convolution of the spectra of the power laser (FWHM∼3.3 MHz) and the confocal etalon (FWHM∼ 7.5 MHz)

taken for a period of∼5 minutes (150,000 pulses) during first light operation in January 2020. The power laser is tuned over the spectrum of

the confocal etalon where a total of 50 individual mean frequencies of the power laser with a difference of 2 MHz each are chosen (vertical

red lines). The power laser matches the requested mean frequencies to better than∼100 kHz, which is within the thickness of the red lines.

The dashed red line is an approximate envelope of the vertical red lines. The black line is the spectrum of the confocal etalon measured

separately by tuning the seeder laser over the spectrum of the confocal etalon. The slightly asymmetric shape of the red dashed line is a result

of a non-perfect optical alignment.
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Figure 5. Upper panel: Frequency of the seeder laser determined with atime resolution of 1/10 second. More precisely the differences

between the nominal frequency and the actual frequencies are shown, where the latter are determined by comparing with high precision

Doppler-free spectroscopy. Note that the seeder was tuned up and down within a range of 100 MHz and several scans are averaged within a

time period of 1/10 s. The mean of the frequency difference is21.44 kHz, and the RMS of the fluctuations is 170 kHz. Lower panel: same,

but for the confocal etalon. The seeder laser from the upper panel is fed into the confocal etalon and the nominal frequency is compared to

the actual (seeder laser) frequency. The mean of the frequency difference is 187.92 kHz, and the RMS of the fluctuations is270 kHz. For

comparison, note that a wind speed of 0.1 m/s corresponds to afrequency shift of 260 kHz.
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Figure 6. Altitude profiles of raw backscattered signals (‘first light’) observed by the detectorsDR−R andDMie observed on 19. January

2020, 18:17:31–22:21:15 LT (see Fig. 3). Red line (DR−R): mainly Rayleigh scattering on molecules (below∼70 km) and resonance

scattering on potassium atoms (∼75–100 km). Blue (DMie): Mie scattering on stratospheric aerosols. Below∼30 km the signal atDR−R

includes a very small contribution from Mie scattering which is subtracted during further processing (see text for moredetails). The decrease

of the signals below approximately 5 km is caused by the chopper, blocking the atmospheric signal.
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Figure 7. Wind profiles from a prototype of a VAHCOLI-unit as derived from the Doppler shift of the Mie signal. Left panel: spectra ofthe

Mie signal (relative to the mean frequencyνo) as a function of altitude. The shift of the spectra relativeto νo is used to derive line-of-sight

winds. Right panel: observed line-of-sight wind profile (red line and error bars) with a height resolution of 200 m, integrated in the time

period 18:10:00–18:30:00 LT on January 19, 2020. Black line: ECMWF wind profile closest in time and space. A small fraction (4%) of

ECMWF meridional winds has been added to ECMWF vertical winds assuming that the lidar has a small tilt relative to the vertical by 2.3

degrees. See text for more details.

36

https://doi.org/10.5194/amt-2021-33
Preprint. Discussion started: 10 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 8. Sensitivity to measure temperatures, winds, and aerosols.Lower abscissa, orange: count rate; red: number of photons (Nph) per

time and height interval ofδt=5 min andδz=200 min, respectively.Nph would increase by a factor of 60 if insteadδt=1 hour andδz=1 km

had been chosen. Black lines at 80-100 km: approximate number of photons expected from the K and NLC layers. The vertical orange lines

indicate the maximum achievable count rate (107 Hz) and typical dark count rates of the detector (20 Hz). Upper abscissa: green: temperature

error for an integration time and altitude bin ofδt=1 hour andδz=1 km, respectively. Blue: error of winds obtained from stratospheric aerosols

(Doppler-Mie, lower part) and from Doppler-Rayleigh (upper part). These calculations assume a laser energy of 6 mJ and an overall detection

efficiency of 30%.
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Figure 9. Temperature error according to equation 5. Here we have assumed that the number of photons counted at 20 km altitude per

time-intervalδt=5 min and height-intervalδz=200 m is 2·106 (red) and 2·105 (green), respectively. The dashed red line indicates the effect

of cascading the detector by a factor of 100 (see text for moredetails).

Figure 10. Impact of increasing the time (δt) and/or the height interval (δz) on the temperature error from equation 5. Temperature errors are

shown as a function of g = (δt·δz)/(δtref ·δzref ) whereδtref=5 min andδzref=200 m.Nref =2·106 is the number of photons atzref =20 km.

The upper abscissa shows the time intervalδt in minutes ifδz=1000 m.
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Figure 11. Horizontal coverage by VAHCOLI consisting of 4 units with 5 beams each. Upper panel: example of positions of 4 lidars (with

5 beams each) located at horizontal positions (x,y) of (0/-30, blue), (-20/0, green), (0/10, orange), and (70/0, red), all in km. At each location

the zenith angles of the 5 beams are 0◦, 35◦, 35◦, 35◦, and 35◦. The azimuth angles of the 4 tilted beams at all 4 stations are45◦, 135◦,

225◦, and 315◦. The locations of the beams at certain altitudes, namely 20 km, 40 km, 60 km, and 80 km, are marked by small circles. Thin

black lines show all horizontal connections between the circles at 60 km. Lower panel: Horizontal coverage by 4 lidars with 5 beams each,

where the 4 locations are chosen from various scenarios. Each point gives the horizontal distance between two beams at analtitude of 20 km

(circles) or 60 km (stars). The size of the symbols indicatesthat several identical distances are represented. The colors indicate the azimuth

of these connections: red: east-west (0◦±20◦), blue: north-south (90◦±20◦), black: others. The corresponding number of cases are listed

on the left ordinate (total of 190). The uppermost scenario (highlighted by small arrows) shows the case presented in theupper panel. The

vertical lines indicate scales which are relevant for stratified turbulence (see section 5.3 for more details).
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Figure 12. Scales of gravity waves relevant for VAHCOLI deduced from the dispersion relation of gravity waves for mid frequencies

(equation 9). Horizontal wavelengths are shown as a function of intrinsic period for various vertical wavelengths (colored lines). The angle

of phase propagation relative to the horizontal direction is given on the top abscissa. The hatched area (top right) indicates the lower part of

ranges covered by satellites.
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Figure 13.Typical scales relevant for stratified turbulence (ST) as a function of turbulent energy dissipation rate (ǫ). Length scales (left axis):

largest horizontal scales of ST (Lh, green), buoyancy scales (Lb, black), and Ozmidov scales (LO, blue). Typical time scales (τh, right red

axis) and horizontal velocities (uh, right black axis) related toLh are shown, as well as typical turbulent velocities (ut). The red dotted line

indicates a typical Brunt-Väisälä period (PB). All scales are shown for two cases, namelyLh=100 km (solid lines) andLh=400 km (dashed

lines). The scales are defined in section 5.3. See also Table 2.
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